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On driving a viscous fluid out of a tube 

By B. G. COX 
Cavendish Laboratory, University of Cambridge 

(Received 9 February 1962) 

Two problems are considered. First, it is shown experimentally that the amount 
of viscous fluid left on the walls of a horizontal tube, when it is expelled by an 
inviscid fluid, reaches an asymptotic value of 0.60 of the amount required to fill 
the tube, when the parameter pUIT is increased, p and T being the coefficients of 
viscosity and interfacial surface tension respectively, and U the velocity of the 
interface between the two fluids. Secondly, by neglecting the inertia terms in the 
equations of motion and the effect of gravity, a theory for the passage of this type 
of bubble is presented, together with experimental results in support of the 
theory. It is shown that such a solution is only valid under certain other 
restrictions, and then only to within half a tube diameter of the nose of the 
bubble. 

1. Introduction 
For some years there has been a certain amount of interest in the problems of 

bubbles of air or liquid in fluid contained in a tube, and this present work is an 
extension of that undertaken in this field by Taylor (1961). In  that paper he 
discussed the fractional amount of viscous fluid which is left on the wall of a tube 
when it is expelled by a column of inviscid fluid. This fraction m depends on the 
non-dimensional parameter pUIT where p, is the coefficient of viscosity, U the 
velocity of the interface between the two fluids, and T the coefficient of inter- 
facial surface tension. His results led him to suggest that m would tend to an 
asymptotic value as pUIT increased, and it was thought to be of interest to 
investigate this point experimentally. It was found (4  2), by using Golden Syrup, 
and a photographic technique, that there was indeed an asymptotic value which 
was in good agreement with that suggested by Taylor. This type of approach 
required an axisymmetric bubble,? and under these conditions the radius of the 
bubble also tended to an asymptotic value for large values of p U / T ,  since the 
ratio h of bubble width to tube width is related to the fractional amount left in 
the tube by the simple expression m = 1 - h2. 

In  4 3, an attempt is made to describe analytically the motion of an axisym- 
metric bubble, by using the equations for slow motion of a viscous fluid, and by 
neglecting the effects of gravity, and the results of this are compared with experi- 
ment in the following sections. 

t In  what follows the word 'bubble' is used to describe the interface between the two 
fluids, although this term is not quite appropriate to an interface which is not a closed 
surface. 
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2. Initial experiments 
2.1. Generat method 

A diagram of the apparatus is shown in figure 1, and is almost self-explanatory. 
It was found necessary to have two jackets round the ‘Veridia’ (accurate bore) 
glass tubing T in which the bubble was formed, the first J to compensate for 
refractive effects as far as possible by being filled with Golden Syrup, and the 
second being part of the water jacket W which completely surrounded the 
apparatus, thus ensuring a constant temperature. This latter jacket was essential 
due to the very marked dependence of the viscosity of the syrup on temperature. 

M 
1, , ~ , ,  , , , , , , ,g 

X 

Distilled water 
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FIGURE 1. Schematic diagram of the apparatus, immediately prior to 
the passage of a bubble. 

It was filled with distilled water for optical reasons. The temperature of the bath 
was kept constant (to within 0.1 “C) by using a contact thermometer R coupled to 
an electronic relay and controlling a heater K whose heat output could be 
quickly and easily controlled by a rheostat. This allowed the operating tempera- 
ture to be quickly attained, and the fluctuations from this temperature to be 
reduced to a minimum-probably well within the limits stated above. Thorough 
circulation and stirring was guaranteed by the small centrifugal pump P. 
A cooling coil of copper tubing, CC, carrying tap water, made it possible to 
adjust the working temperature to any predetermined value. 
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Photographs were taken in the horizontal plane (see figure 2) at the point 
marked D with flashgun and plate camera, and the velocity was measured by 
stop watch at  E and F, thus checking whether the bubble was departing from 
uniform translation. Due to the colour of the syrup it was necessary to use 
panchromatic plates, and Ilford H.P. 3 gave excellent results. 

- - - - - - -Diffusing screen 

W 

FIGURE 2. Plan of apparatus showing photographic arrangements. 

The procedure was as follows. The pressure-head column M was filIed with 
mercury, and adjusted so that the base of the Perspex cylinder C was covered. 
Carbon tetrachloride was poured in through tube A to a level just below that of 
the glass tube, T. Next, taking care to avoid air bubbles, Golden Syrup was added 
by way of tube B. This syrup, being less dense than CCl,, lay on the surface of the 
latter and gradually made its way down the horizontal tube, T, until the tube was 
completely full. A rubber bung was placed in the end G. The pump, heater, etc., 
were then switched on and after the operating temperature set on the contact 
thermometer had been reached, the apparatus was left for about three hours to 
attain equilibrium. Then with tap B closed and tap A open, the pressure was 
raised in the mercury column until the CC1,Golden Syrup interface was above 
the level of the tube entrance H, excess fluid and some air being driven out 
through A. Tap A was now closed, and the pressure increased still further to an 
empirically calculated value. The experiment was started by removing the cork 
at  G, the photograph taken and velocities measured as the bubble passed down 

0-2 
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the tube. An example of a bubble photographed by the above method is repro- 
duced in figure 3. Subsequent experiments were more quickly made, for, once the 
tube had been removed, very thoroughly cleaned, and replaced, the CCI, in the 
cylinder could be topped up, and the tube refilled as before. From then on the 
procedure was exactly as above. 

Outer diameter 

Inner diameter 

Inner diameter 

Outer diameter 

FIGURE 3. Typical bubble profile, moving with velocity 0.50 cm/sec. Parameter 
pU/T = 12.5. Actual tube bore 1.00 cm. The vertical line appearing in the centre of the 
photograph is one of a series of marks scratched on the jacket J to measure the velocity 
of the bubble. 

The amount of fluid left behind in the tube could then be found from measure- 
ments taken on the photographic negative. This was carried out by measuring the 
inner and outer diameters of the tube and the width of the bubble, at regularly 
increasing distances from the nose of the bubble. This work was facilitated by 
using a travelling microscope with a two-way travel, and capable of & 0.001 mm 
accuracy. In  all photographs it was apparent that the bubbIe width tended to an 
asymptotic value within about 18 tube diameters of the nose (see figure 3). This 
fact was quite discernible from the measurements taken as above. The asymptotic 
width of the bubble was calculated by taking the mean of about twenty measure- 
ments from the region where this was permissible. The mean value of the outer 
diameter of the tube was also calculated, and about 40 values could be used for 
this as it did not depend on the position of the bubble. As the actual ratio of the 
two diameters had been measured on the tube used in the experiment, the true 
value of the inner diameter, in the scale of the photograph, could be calculated by 
simple proportion from the mean outer diameter. This lengthy procedure was 
necessary because of the distortion of the inner diameter in a photograph. For 
some further detail on this point see 9 2.2.2.  

The ratio h of asymptotic bubble width to inner diameter, and thus m, the 
fractional amount of viscous fluid left in the tube, were then found. The accuracy 
of the measurements made on the microscope was limited by the definition 
obtainable in a photograph. Hence, it was desirable to take the mean of as many 
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measurements as possible to find the bubble width and outer tube diameter, 
before calculating the value of A. 

The parameter pUIT was found by measuring the three quantities involved 
independently; U as above, by taking the mean of the two measured velocities; 
p and T as below. Several experiments were made at different values of pUIT,  all 
greater than 10, but the photographs obtained were completely indistinguishable, 
implying exactly the same value of A, and hence of m, this latter being 0.60. 

2.2. Notes on the experiments 
2.2.1. Choice of fluids. It was a t  first thought that some sort of oil would be 

suitable for the viscous fluid, but the only oils with high enough viscosity at  room 
temperature were far too opaque for photography. It was recently realized that 
silicone oils might have proved very satisfactory, but the problem of thorough 
cleaning of the tube would have remained. Hence Golden Syrup was chosen, and 
providing a reasonably fresh sample was used, the results were consistent. As a 
sample aged, non-Newtonian properties became evident, but as the colour of 
syrup darkens with age, a rough check could be kept on this point. 

The choice of carbon tetrachloride as the driving fluid was influenced by 
several factors. These were first, that it is inviscid compared with Golden Syrup 
(the ratio of the viscosities at 20 “C being 1 to 40,000 approximately); secondly, 
that it  is immiscible with mercury and with the syrup; and third, that although 
not a perfect match as regards density,it is very nearly so, thus avoiding possible 
asymmetry due to gravity forces. There was, in fact, no detectable asymmetry 
of the profile even when the photographic negative was examined under the 
travelling microscope, and the measurements described above verified this. That 
CC1, is slightly heavier than Golden Syrup greatly facilitated the filling of the 
apparatus. 

It was later realized that CCl, attacks Perspex to a certain degree, and some 
surface ‘crazing’ became apparent after a month or so. However this disadvan- 
tage by no means outweighed the advantage of having certain parts of the 
equipment made from Perspex due to the excellent optical properties of this 
material. (Further difficulties with Perspex occurred due to residual stress in 
machined parts. This is an unavoidable possibility unless machined articles are 
subjected to special treatment.) 

2.2.2. Refractive index and distortion. Since the refractive indices of CCl,, 
Golden Syrup, and glass are slightly different, the photographs taken must be 
subject to a certain amount of distortion caused by the cylindrical-lens effect of 
the glass tube. The effects of distortion were kept to a minimum by enclosing the 
tube in a jacket containing Golden Syrup. This did not eliminate it entirely by 
any means, and the geometrical optics of the system were still quite complicated. 
Various light rays passing through the tube were considered, and the effects 
calculated. Two methods were used, first, a graphical ray-tracing technique, and 
secondly an analytic method, and the results obtained were in good agreement. 
In  general, it  was found that there was a negligible amount of distortion of the 
bubble profile, but an appreciable amount (1.7 yo) at the inner edge of the glass 
tube. But the effect of distortion as regards calculating results, even at  this inner 



86 B. G. Cox 

edge of the tube, could be avoided by finding the true inner diameter of the tube 
from the outer diameter by simple proportion, as described above. In  the course 
of measuring the outer diameter and the bubble width on the photograph, a note 
of the inner diameter was made, so that this could be compared with the value 
obtained by proportion, and the distortion thereby found. This gave a check on 
the variation of the refractive indices since, by considering the optics of the 
system, there is a simple relation between the distortion of the inner diameter and 
the ratio of the indices of glass and syrup. 

It was noticable in every photograph that the outer diameter of the tube and 
the bubble profile appeared as a double line (see figure 3). This phenomenon is 
easily explained by consideration of the refractive indices of the materials forming 
these boundaries, and it proved possible to find the ratio of the indices of the two 
substances forming the boundary by measuring the width of the double line, 
using a very elementary calculation. This was of value as it gave an immediate 
check on the optical properties of the media at  the time of each photograph. This 
is particularly useful for substances like Golden Syrup whose properties are often 
in doubt, and which can vary very quickly with time. 

2.2.3. Viscosity. As is to be expected in a fluid of high viscosity, there is a 
rapid decrease in the viscosity of Golden Syrup with increasing temperature, and 
hence care had to be taken in the measurement of it. The most satisfactory way of 
finding the value of the coefficient of viscosity at the operating temperature was 
to immerse a cylinder containing Golden Syrup (in fact the sample from which the 
tube was filled) into the water bath W and to measure the velocity of a ball- 
bearing falling down the axis of the cylinder. This gave consistent results, with an 
accuracy of 1 % for any particular sample of syrup, but did require a correc- 
tion factor for the effect of the wall of the cylinder, as calculated by Haberman 
(1956). 

2.2.4. Xurface tension. Since reasonably accurate values of the interfacial 
surface tension of carbon tetrachloride and Golden Syrup were required, it was 
decided that the pendant drop method would be the easiest and most satisfactory 
method to apply. It did indeed give consistent results provided the drop was 
stationary. Experimentally the method was very similar to that used by Fordham 
(1948), again using the water bath to ensure measurement at  the correct tem- 
perature, and the tables from the above paper were used to calculate the final 
values for the coefficient of interfacial surface tension. Consideration of the 
standard deviation from the mean of several measurements by this method gave 
a possible error of 2 % in the results at any particular temperature. 

3. Theory 
3.1. Physical assumptions 

Two basic assumptions, justifiable on physical grounds, were made so that the 
analysis could be simplified. These were: (i) that the inertia terms in the equations 
of motion were negligible, and (ii) that gravity forces were also negligible. The 
first of these is justified by considering the Reynolds number based on the flow 
round the bubble (of asymptotic width ha). This parameter is p 2  haU/,u, where p 2  
is the density of the syrup, and under the experimental conditions described in 
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this paper, this was of the order of 11200. Obviously, for faster moving bubbles, 
or less viscous fluids, this assumption may not be valid, nor will it necessarily be 
valid where surface tension forces predominate. This latter case is discussed by 
Bretherton (1961). 

Assumption (ii) implies that the bubble is axisymmetric. One way of con- 
sidering the effect of gravity forces is to compare the time taken for the fluid left 
attached to the walls of the tube to drain to the lowest generator, with the time 
taken by the profile to advance a tube diameter. This is given by the parameter 

(P1 - P A  9h2a2/PU, 
where p1 is the density of the inviscid fluid. Hence for the bubble to be axisym- 
metric, this parameter must be very much less than 1. From a practical point of 
view, the conditions of the experiments of Q 2 give this parameter a value of 1/40, 
so it is reasonable that there should have been no detectable asymmetry. However 
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FIGURE 4. Section of bubble profile, and co-ordinate system. 

for those experiments at  30°C, as described below, where p z 90 poise, the 
parameter is of the order of 0.2, so it is not surprising that slower bubbles at  this 
temperature showed a detectable lack of symmetry. As far as the theory is 
concerned, this parameter is of little importance as it is theoretically possible to 
take fluids of exactly the same density. For this same reason the two conditions 
on the velocity of the interface, i.e. U < p/p2 ha and U $ (pl - p2) gh2a2/p, do not 
lead to a contradiction. 

3.2. Exact equations 
Consider an inviscid fluid driving a viscous fluid along a tube (see figure 4). For 
the motion of a viscous fluid, when the inertia terms are negligible, the Navier- 
Stokes equation reduces to 

pV2u-gradp = 0, 

and if the fluid is incompressible, this can be further reduced to 
(1) 

curl(V2u) = 0. (2) 

Using cylindrical-polar co-ordinates ( r ,  4, z), take co-ordinate axes fixed in space, 
with the z-axis along the axis of the tube. Then by assumption (ii), all derivatives 
with respect to 4 are zero. Hence the results given in Goldstein (1938, pp. 114-15) 
can be applied, i.e. there exists a stream function $(r, z),  such that the velocity 
u of the viscous fluid is given by 

u = (r-1 a$/az,o, - r-1 a$/ar), 
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and so, from (it), the equation for $ is 

The boundary conditions are as follows : 
(i) the tangential and normal components of velocity of the fluid at  the wall 

(ii) the tangential stress on the interface between the fluids is zero; 
(iii) the difference in the normal stress on the two sides of the interface is 

(iv) there is no diffusion across the interface. 
Expressing these conditions in analytic detail, condition (i), the no-slip 

of the tube are zero; 

balanced by the surface-tension force; 

condition, reduces immediately to 

r-1 a$laz = r--1 aglar = 0, (4) 
when r = a, if a is the radius of the tube. 

By taking the expressions for the components of the stress tensor, and sub- 
stituting for the velocities in terms of the above stream function, condition (ii) 
becomes 

( 5 )  
sin2O( azg la$)  cos2e a2g l a $  az$ 

( r araz r aZ a+ r ar az2 
~ 2 - _ - -  _~ 

on the interface, where O is the angle between the outward normal to the surface 
of the bubble and the axis of x ,  as shown in figure 4. 

Similarly, we obtain for condition (iii) that 

where p, is the (uniform) pressure in the inviscid fluid, p2 is the pressure in the 
viscous fluid, T is the coefficient of interfacial surface tension, and K is the mean 
curvature of the profile. 

The final boundary condition, which is equivalent to the condition that the 
profile should be a streamline, is, in the notation of figure 4, 

uZ cos O + U, sin O = U cos 0, 

where U is the velocity of the interface in the z-direction. This gives on substitu- 
tion for u, and u, in terms of $(r, z )  

on the interface. 
It should be noted that these conditions are those appropriate to axes fixed in 

space. Many authors, e.g. Haberman (1956), have approached similar problems 
by taking axes fixed with respect to the bubble. This involves small changes in 
conditions (i) and (iv) only. 

3.3. Approximations 
These equations, (3) to (7), although valid throughout the viscous fluid, and for 
any part of the profile, are not very easy to handle in their present general form, 
partly because the actual shape of the profile must be found as part of the solution. 
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Obviously the first simplifications to apply are those suggested by observation 
of a practical case. Let A’ represent the asymptotic radius of the bubble, which is 
known to exist by 0 2,  and let the axisymmetric profile be given by 

r = A’-€, 

for some small positive perturbation E .  Further, as suggested by the asymptotic 
nature of the profile, and also by the results of fitting various curves to a typical 
interface, let E be given by 

E = q,ekz, for some e,. (8 )  

The validity of this equation is considered in 8 4. Since the profile is a streamline, 
this assumption as to the form of E implies that the stream function $(r, z )  will 
be of the form $(r,  z )  = R(r) ekz. There appears at first sight to be a contradiction 
here in that equation (8) defines an interface that is independent of time, whereas 
the co-ordinate axes have been taken as fixed in space. However, as the inertia 
terms in the equations of motion are negligible, the subsequent analysis is not 
affected to the order of approximation considered. 

The restriction that E be small, means that the analysis is to be restricted to the 
region ED of figure 4, where the flow is nearly parallel to the walls of the tube. 
Since by this method the nature of the flow around the nose of the bubble is not 
being investigated, it will obviously not be possible to find the explicit relation- 
ship between h and pUIT. The analysis that follows will be accurate only to the 
first order of small quantities, i.e. to the first order in e. 

Assume that there exists a solution to equation (3) of the form 

$(r, z )  = R(r) ekz; 
the equation then becomes 

(d2/dr2 - r-l a/& + k2) ,  R(r) = 0, 

and the solution for the stream function is easily seen to be 

$(r,  x )  = [Akr2J,(kr) + BkrJ,(kr) + Ckr2Y,(kr) + DkrY,(kr)] ekz, ( 9) 

where A ,  B,  C, D are arbitrary constants, J, and J1 are Bessel functions, and Y, 
and 5 are Weber functions, in the notation and nomenclature of Watson (1 944). 

It will be noticed that this method of approximation has a certain similarity 
to the methods of water-wave theory, particularly in the respect that to obtain 
a more accurate solution to the problem, it would be necessary to take a solution 
to (3) in a more general form, that is something like 

$l(r74 = C f k ( r ) e k z ,  
k 

which immediately makes the analysis exceedingly difficult. 
Recalling the original equation of motion (1)  it is easily shown, by using the 

above solution (9) for $ in terms of r and z, that for the pressure p ,  in the viscous 

(10) 
fluid 

where E is a numerical constant. 

p ,  = 2p[Ak2J0(kr) + Ck2Y,(kr)] ekB + E,  
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The expressions for the boundary conditions on the wall of the tube, equa- 
tion (4), are easily obtained from equation (9) by differentiation with respect to x 
and r,  and lead to 

AaJ0(ka) + BJ,(ka) + CaYo(ka) +DY,(ka) = 0,  (11) 

(12) and 

respectively. 

the tube, the angle 8 is approximately in-. Hence equation ( 5 )  becomes 

(2A + Bk) Jo(ka) - AkaJ,(ka) + (2C +Dk) Y,(ka) - CkaY,(ka) = 0, 

For the two stress conditions, since the flow is nearly parallel to the walls of 

a 2 $ p 2  - r-l a$/& - a2$./a9 = 0 on r = A‘ - B, 

which, on substitution for the stream function, gives 

[AkrA(kr)+ ( A  +Bk)J,(kr) +CkrY,(kr)+ (C+Dk)q(kr) ]r=x-c  = 0. 

Since the transverse velocities in the region ED are of the order of E ,  so then is the 
stream function $(r,z) ,  which in turn implies that the arbitrary constants in 
equation (9) are also of order E .  Therefore, as E is considered small, products of 
type EA, etc., may be neglected. Hence, by using Taylor series expansions for the 
Bessel and Weber function about r = A’ and neglecting terms of the second and 
higher orders, the tangential condition on the profile reduces to 

AkA’Jo(kh’)+ ( A  +Bk)Jl(kA‘)+Ckh’Yo(kA’)+ (C+Dk)Y,(kA’) = 0. (13) 

Equation (6) for the normal stress condition can be reduced by the same 
methods. To first-order quantities, the mean curvature K is related to A’ and E by 

Hence substitution in (6) for $ and p from (9) and (10) respectively, and pro- 
ceeding as above, gives, to the first order in E ,  

by considering the flow where the bubble is parallel to the wall of the tube. 
Finally, condition (7) is similarly reduced. Division by sin B gives 

Since the profile is given by r = A‘ - E ,  it  follows that the angle 8 is related to E by 
cot 8 = ds/dz.  Again using the order of magnitude argument, since $ is of the 
order of E ,  r-l(a$pr) cot 8 is of the second order of small quantities, and so is 
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negligible compared with the other terms of the above equation. Hence, for a 
bubble moving with uniform velocity U down the tube, 

[r-1 a$/a.~l,=,.-, = ud+z, 

to the first order. This, on similar substitution and simplification, a8 applied 
above, reduces to 

Akh’J,(kh‘) +BkJl(kA’) + Ckh’Y,(kh’) + Dk&(kh‘) - U E ~  = 0,  (15) 

Hence for a unique non-trivial solution we have, from these five equations (1  1) 
to the first order. 

to (15), with a little rearrangement, 

Mayo( ka) 
2&(ka) 
- ka&(ka) 

2JO@) kha Jo( ka) - kaJl(ka) 

where A’ has been replaced by ha so that h is the asymptotic ratio of bubble radius 
to inner tube radius, and 11s = ,uU/T. 

ka 

FIGURE 5. Graph plotted from equation (16). Theoretical results shown -; points 
marked @ are taken from table 1 and given the appropriate number. 
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Equation (16) is effectively an implicit relation between the fundamental 
quantities S,  A, and k of the problem. An electronic computer, EDSAC 11, was 
used to obtain corresponding values of S and ka (ka rather than k as then all three 
quantities are non-dimensional) for particular values of A, and from these the 
graph shown in figure 5 was drawn. (The experimental values, obtained by the 
method described in Q 4, are also shown for comparison.) Notice that in the theory 
there is no restriction on the values of h which now lies in the range 0 < h < 1, 
though in practical cases h lies between 0.6 and 1.0, from 9 2.1. 

As there are three parameters A, ka and S appearing in ( l6) ,  there are several 
ways of reproducing graphically the relationship between them. The choice made 
here was influenced by the requirement that the experimental points should be 
distinguishable from one another. An alternative representation, plotting 1 - h2 
against I/#, i.e. pUIT ,  is reproduced in figure 6 and discussed in 3 4. 

3.4. Linearizing approximations 

The approximations used to arrive at the solution were: (i) that 8 1: in, (ii) that 
.s/h < 1, and (iii) that ks < 1. These can be grouped together in the one condition 
that B < 1, unless k is very large. When viscous forces are of the order of, or 
predominate over, surface tension forces, i.e. p U / T  2 1, there is little variation 
in A, and in ka. Hence, the solution may be expected to be valid until fairly near 
the nose of the bubble. However, for those cases when the tube is narrow, or 
pUIT is small, k can become quite large, and so the analysis will probably break 
down. Except for these extreme cases, it is most likely that the solution is valid 
to within half a tube diameter of the nose of the bubble. 

4. Further experiments 
Since the apparatus was primarily designed for checking Taylor's (1961) 

hypothesis by operating at large values of pU/T  (or small S) ,  some small modifica- 
tions were necessary to obtain smaller values of this parameter (or larger values 
of S) ,  so that the theory of Q 3 could be.tested. The main change was the insertion 
of a throttle valve in the mercury line at X (see figure 1) enabling the adjustment 
of the velocity of the bubble, U ,  to be made more easily. This valve also facilitated 
the general running of the experiment, although it made the calculation for the 
required initial pressure more complicated because of the pressure drop through 
the valve. In  fact, it  was usually necessary to make several preliminary runs to 
determine the required height of mercury and corresponding valve setting, 
before a bubble moving with sufficiently constant velocity had been obtained. It 
is a constant pressure gradient between the nose of the bubble and the end of the 
tube that is required. 

To reach values of S of the order of 1, a higher operating temperature (30 "C) 
was also required. However, a t  this temperature there is a greater difference in 
the densities of CC1, and Golden Syrup, and the velocity of the bubble had to be 
greater than 4 cmlsec for the profile to be axisymmetric. Hence it was not possible 
to reach values of S greater than 1 without considerable modification of the 
apparatus, and, for various reasons, this was not considered justifiable. 
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Otherwise a photograph was taken and measured as before. An exponential 
curve was fitted to the profile by the method described below, and thus ka found, 
where a was the radius of the tube in the photograph. The asymptotic ratio of 
the radii, A, and the parameter S were found precisely as in $2.  The results of this 
for six cases are shown in table 1, and plotted graphically in figure 5. Since the 
photographs for small values of S were identical, only one was measured by this 
method, and the result shown here. 

k a 
No. (mm-1) (mm) ka S A,,,, L c  

1 0.160 11.96 1-92 0.080 0.634 0.631 
2 0.197 11.20 2.20 0.654 0.660 0.688 
3 0.182 11.24 2.04 0.719 0.665 0.668 
4 0.180 11.16 2.01 0.645 0.660 0.662 
5 0.186 11.22 2.09 0.658 0.660 0.674 
0 0.187 11-23 2.10 0.685 0.660 0.676 

TABLE 1. Summary of experimental results of $4, for comparison with 
figures 5 and 6. 

I I 1 I I I 

I I 
i 

W I T  
FIGURE 6. Alternative representation of equation (16), showing also the results of table 1 
(as a), and Taylor's experimental curve (---) for the fractional amount of fluid left in 
the tube as a function of pUIT. 

The final column of table 1 contains the theoretical values of h to be compared 
with the experimental results in the adjacent column. These were calculated by 
inserting the appropriate values of ka and S from the preceeding columns into 
equation (IS), and finding the root of h by inverse interpolation on theelectronic 
computer. 

As rather a sideline, the theoretical results of $ 3  were compared with the 
experimental curve comparing m = 1 - h2 with pU/T obtained by Taylor (1961). 
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Rearrangement of the results obtained from the electronic computer from 
which figure 5 was drawn, and some further programming, made it possible to 
plot m against pU/T for constant ka, as shown in figure 6. The experimental 
curve, taken from Taylor’s work and the experimental values of table 1 are also 
shown. The most likely explanation of the small discrepancy between the results 
of table 1 and Taylor’s curve, is that the slight asymmetry of the interface would 
give a low value for A, and thus too large a value for m. The consistency of the 
error supports this view. The difference is thought to be too small to affect 
seriously the validity of the experimental results. 

However, no practical results have been obtained from this comparison so far, 
except for the obvious one that ka tends to a constant value (near 2.0) as pU/T 
increases. This is to be expected since h is also tending to an asymptotic value, 
that is, the shape of the profile can be expected to be independent of pU/Tfor 
large values of this parameter. This is confirmed by figure 6. 
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FIQURE 7. Graphical comparison of lower half of a bubble profile, and the fitted exponential, 
plotted from the figures given in table 2. 

It is hoped, if an analytic solution is obtained for the nose of the bubble, that 
this will provide the necessary connexion between the three parameters A, ka, and 
p U / T ,  thus overcoming the present indeterminate nature of this problem. 

Exponential Jitting 
For the results in table 1 the following method was used. Eight points (A, €3, . . . , H) 
in figure 7 were chosen from the profile, the horizontal distance between H and 
the nose of the bubble N being the same in each photograph measured. The 
exponential curve y = a ekx + b was fitted to these points by the method of least 
squares, where a, b and k were all allowed to vary. This calculation was carried 
out on the electronic computer for accuracy and convenience. An example of the 
resulting curve, and the profile from which it was taken, is shown in figure 7 .  
However the agreement between the two curves is so close that the values from 
which figure 7 was plotted are shown in table 2. It is interesting that such a large 
part of the profile is accurately exponential in form. In  each case the value of 
b obtained from the computer was checked with the known value of the asymp- 
totic radius of the bubble, and in no case did it exceed the experimental spread of 
the measurements from which the mean asymptotic bubble width was calculated. 
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X 

-a3 
0 
2.5 
5.0 
7.5 

10.0 
12.5 
15.0 
17.5 
20.0 
22-5 
25.0 
27.5 
30.0 

Measured 
distance of 
profile from 

x-axis 
(mm) 
0 
0.015 
0*018 
0.040 
0.077 
0.124 
0.203 
0.320 
0.531 
0.851 
1.342 
2.130 
3.460 
7.409 

Calculated 
distance 

(mm) 
-0.011 

0.010 
0.021 
0.041 
0.072 
0.121 
0.201 
0.328 
0.530 
0.853 
1-369 
2.194 
3.511 
5.615 

TABLE 2. Co-ordinates giving shape of profile, and corresponding values 
for fitted exponential. 

5. Discussion of results 
(i) The primary object of this experiment was achieved, namely to find the 

fractional amount of fluid left sticking to the wall of a tube for large values of 
,uU/T. The experiments describedin $ 2  were all a t  values of,uU/T greater than 10, 
whereas the highest value previously considered was 2.0. Hence the value of 
0.60 obtained for this fraction is a most reasonable confirmation of Taylor’s 
suggestion that it would be a little greater than 0.56. This result implies that more 
than half of a very viscous fluid is left in the tube. 

(ii) On consideration of table 1 and figure 5 ,  it  would seem that the theory 
presented in $ 3 is reasonable for the part of a profile where (a) it is of exponential 
form, and ( b )  the approximations in $ 3  are justifiable. The close fit to an 
exponential curve shown by figure 7 suggests that these conditions are not as 
restrictive as would appear at first sight. Hence it may be assumed that equa- 
tion (16) represents a solution valid under normal circumstances to within half 
a tube diameter of the nose of the bubble. The most important implication of 

. this correlation between the linearized theory and experiment is that it gives 
confidence in the above method of selecting and using the boundary conditions. 
It also seems that it is justifiable to assume a well-defined surface tension for this 
type of problem, and for the fluids used. This is interesting as numerous workers 
have commented on the difficulty of using concentrated sucrose solutions, 
particularly as regards surface contamination, and other similar effects. As the 
above experiments were made in the region where viscous forces are, at  the very 
least, of the same order of magnitude as those due to surface tension, it would be 
surprising to find surface effects playing an important role. This is not, however, 
the case in some similar problems, particularly where p U / T  is very small, as for 
example those discussed by Bretherton (1961). 
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An attempt was made to correlate this theoretical work with that of Bretherton, 
by calculating the value of the determinant (1 6) for h very nearly equal to 1, and 
substituting his theoretical results in that expression. However, his results give 
a very large value for k, and hence the restriction that ks be small, and that 
second-order terms may be neglected, is no longer observed. It is most probably 
for this reason that the attempt failed. It is in fact not particularly surprising 
that it did, as Bretherton’s work only applies to the region pU/T < 5 x i.e. 
x > 200. 

A most noticeable feature of the experiment was the extreme stability of the 
profile of the bubble. Within a few tube diameters of entering the tube, the profile 
had attained its axisymmetric shape, and thereafter retained this bullet-shaped 
form throughout the rest of its passage down the tube. The majority of the 
apparatus had been constructed of glass or Perspex partly so that this question of 
the stability of the profile could be observed. The stability of the motion also 
seemed to apply to the initial stages. As the motion of the bubble was started by 
removing a cork a t  the end of the tube, it is not very likely that the initial 
conditions were identical each time. Yet as far as could be observed the initial 
motion was the same on every occasion. It is interesting that when Saffman & 
Taylor (1958) studied the relatively similar two dimensional analogue of this 
problem in a Hele-Shaw cell, they found that special precautions were necessary 
to avoid forming fingers of inviscid fluid during the initial stages of the motion. 
On the other hand, no particular precautions were takenin the above experiments, 
nor were any fingers observed. 

Further work is now being carried out on a theoretical account of the nose of 
the bubble, but the results are not yet conclusive. An attempt is also being made 
to solve the complete problem numerically, with the aid of an electronic computer. 

My thanks are due to Sir Geoffrey Taylor and to Dr F. P. Bretherton for their 
continued interest and advice; to the Cavendish Laboratory Workshop for 
making the apparatus; to Mr W. E. Thompson for assistance with measurements 
and frequent advice in practical matters. The above work was carried out 
during the tenure of a Commonwealth Scholarship. 
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